<table>
<thead>
<tr>
<th>GOAL</th>
<th>ASSESSMENT METHOD</th>
<th>ASSESSMENT CRITERIA</th>
<th>FINDINGS</th>
<th>USE OF FINDINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Students will be able to demonstrate basic knowledge of chemistry</td>
<td>I.1. Quizzes, Exams, Lab Reports, Research Reports resulting in Chemistry GPA</td>
<td>I.1.A. Course grade will average 2.5 or better</td>
<td>I.1.A.1. 100L3.1 101L3.3 102L3.1 112L3.5 140L3.2 150L3.3 160L3.6 Grand Total 3.3</td>
<td>I.1.A.1.a. incorporate into exams questions from both NY State Education Dept. & North Carolina Chemistry Teachers on-line question banks; provide wider context for evaluation of basic knowledge of chemistry</td>
</tr>
<tr>
<td>II. To offer a variety of environments to meet the learning needs of a diverse student population.</td>
<td>II.1. Instructor comparison of quiz/exam performance, to lab report performance, to performance on research projects requiring internet research and critical analysis.</td>
<td>II.1.A. Performance will be approximately equal.</td>
<td>II.1.A.1. computerized homework, using randomized numerical inputs for each student, provided the greatest challenge for most students; those who did well on the weekly homework did well on the exams.</td>
<td>II.1.A.1.a. continue WebAssign homework system; provide some for credit homework problems with worked out solutions to build confidence in the otherwise motivated</td>
</tr>
<tr>
<td>III. To provide a learning environment that promotes critical thinking and analysis in science.</td>
<td>III.1. Analysis of depth of exam questions and lab reports</td>
<td>III.1.A. 25% of questions on exams and 100% of lab assignments will require critical thinking and analysis in science beyond the knowledge level.</td>
<td>III.1.A.1. These questions "chromatographed" the class very reliably: the unmotivated usually leave them blank; those who try are well separated according to their level of understanding</td>
<td>III.1.A.1.a. continue; encourage those who repeatedly show low motivation to drop early; utilize incorrect responses as re-teaching opportunities.</td>
</tr>
<tr>
<td>IV. Students will compete favorably with peers in subsequent chemistry courses at transfer institutions.</td>
<td>IV.1. Evaluate transfer institution transcript data provided by Peninsula College Office of Institutional Research</td>
<td>IV.1.A. At least 60% of transfer students will achieve or exceed GPA of 2.0 in subsequent chemistry courses taken at transfer institutions.</td>
<td>IV.1.A.1. In 2004-05 there were 10 transfer chemistry courses taken by previous PC students of those 4 scored above 2.0 for 40%.</td>
<td>IV.1.A.1.a. Present and future transfer data is no longer available as this data base is now defunct.</td>
</tr>
<tr>
<td>GOAL</td>
<td>ASSESSMENT METHOD</td>
<td>ASSESSMENT CRITERIA</td>
<td>FINDINGS</td>
<td>USE OF FINDINGS</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>V. To facilitate a quality learning experience for students that reinforces curricular objectives, achieves expected student outcomes, and advances the transfer mission of the College</td>
<td>V.1. Enrollment in academic unit courses.</td>
<td>V.1.A. Achieve an average student enrollment of at least 15 in core courses.</td>
<td>V.1.A.1. COURSE_NUM AvgOENR_TOTAL 100L15 101L14 102L4 112L15 140L21 150L18 160L16</td>
<td>V.1.A.1.a. To address low Chem 102L enrollments, develop a cross-referenced course with Huxley Program (WWU) which has an O.Chem. requirement that PCs Chem 102 could meet</td>
</tr>
<tr>
<td>V.2. Completion (defined as 2.0 or better) on all graded enrolled credits in academic unit courses (3 yr trend)</td>
<td>V.2.A. Achieve an average student completion rate of at least 90%</td>
<td>V.2.A.1. Course Fraction Percent 100L 61/71 86% 101L 143/160 89% 102L 4/4 100% 112L 55/58 95% 140L 20/21 95% 150L 16/18 89% 160L 16/16 100%</td>
<td>V.2.A.1.a. since Chem 101L is a "gate-keeper" course for certain prof-tech programs, as well as a pre-requisite for Chem 140L which begins the science majors sequence, we should adjust assessment criteria to "at least 75%" for these two courses.</td>
<td></td>
</tr>
<tr>
<td>V.3. CCSEQ - Estimate of gains section aggregate responses of questions #4-11, #14-24 for transfer students.</td>
<td>V.3.A. Achieve an average of at least 40% positive response ("quite a bit" or "very much") or selected Estimate of Gains questions for transfer students on</td>
<td>V.3.A.1. 2005 CCSEQ TransferTotal234 Gain%Positive 4 57% 5 32% 6 39% 7 62% 8 45% 9 45% 10 38% 11 51% 12 36% 15 38% 16 46% 17 52% 18 23% 19 28% 20 29% 21 34% 22 37% 23 37% 24 30%</td>
<td>V.3.A.1.a. Questions 10,14,15 & 19 will be selected for addressing. Quiz, exam and lab write-ups will require interpretation of graphs and charts acquired by the student via the internet; interpretations will require use of probability and proportion concepts; the charts to be interpreted will bear on the role of science and technology in society; lab-writes will require making graphs and charts using computer programs</td>
<td></td>
</tr>
</tbody>
</table>
GOAL
V. To facilitate a quality learning experience for students that reinforces curricular objectives, achieves expected student outcomes, and advances the transfer mission of the College

ASSESSMENT METHOD
V.4. ACT Student Opinion Survey - College Environment Academic (1-12 or selected subset)

ASSESSMENT CRITERIA
V.4.A. Achieve an average of at least 40% positive response (very satisfied or satisfied)

FINDINGS
V.4.A.1. Question %
Positive Arts Grading 77%
Course content 71%
Quality of instruction 80%
Availability of instructors 70%
Attitude of faculty to students 89%
Variety of courses 67%
Class size 80%
Program flexibility 66%
Availability of advisor 65%
Value of advisor information 64%
Challenge of program 72%
Preparation you receive 64%

USE OF FINDINGS
V.4.A.1.a. hold discussions with advisors counseling students into Chem 101L and Chem 140L

GOAL
V.5. CAAP Percentile ranking on test given that year for students indicating transfer or AA degree intent.

ASSESSMENT METHOD
V.5.A. Achieve performance levels above the 50th percentile for each of the subject tests of students taking the CAAP.

ASSESSMENT CRITERIA
V.5.A.1. Writing 65th percentile
Reading 63rd percentile
Science 61st percentile

FINDINGS
V.5.A.1. Writing 65th percentile
Reading 63rd percentile
Science 61st percentile

USE OF FINDINGS
V.5.A.1.a. stay the course

GOAL
V.6. SBCTC Transfer Ready Report (Percent as (number of students <45 credits but receive degree plus number of students >45 credits)/(total transfer degree seeking)).

ASSESSMENT METHOD
V.6.A. Achieve an average transfer ready for degree seeking students of at least 50%.

FINDINGS
V.6.A.1. 2005-06 There were 547 transfer ready students out of 1368 transfer seeking for 40%

USE OF FINDINGS
V.6.A.1.a. continue to consult UW, WSU and WWU chemistry course syllabi for content, emphasis and texts